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Abstract Rigorous lower and upper bounds on the lowest three eigenvalues of the
two-electron atomic Hamiltonian are obtained for the symmetry sectors 1S,3S,1P,3P
and the sector 3Po with unnatural parity. The bounds result from three-dimensional
projection operators and are given as explicit expressions that depend on the nuclear
charge Z as parameter. They are designed for application within further analysis, and
we exemplify this by demonstrating monotonicity properties of excitation energies.

Keywords Two-electron atom · Lower and upper bounds · Rigorous analysis ·
Excitation energies

1 Introduction

Lower boundedness is one of the essential properties of the standard nonrelativistic
Schrödinger operators employed to describe atomic systems. As a consequence, (very)
sharp upper bounds on discrete spectral points of these operators can be obtained by
variational arguments, i.e., by invoking the minmax theorem [1,2]. By contrast, com-
plementary lower bounds of comparable quality are much more difficult to acquire.
For the simplest nontrivial situation, i.e., the helium atom, numerical upper bounds
have been computed [4,5] that are believed to approximate the exact ground state
energy up to more than 40 digits, while the sharpest lower bound [6] differs from this
upper bound in the 14-th digit. From a quantitative point of view, these results are
certainly completely sufficient to allow a definite comparison with experimental data
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or with, e.g., relativistic modifications of the theory. On the other hand, such results
are of merely limited usefulness for an investigation of qualitative atomic properties.
In particular, for studying the behaviour of atomic system and their characteristics
when the nuclear charge Z is changed, not just numbers for a few selected Z but the
explicit dependence of the bounds on the Z parameter will be of interest. Moreover, in
this context also noninteger Z values are of relevance since by scaling and symmetry
arguments energies of atoms with N > 2 electrons can be related to those of the
two-electron system with scaled Z [3].

In the literature, various explicit expressions for rigorous lower (and upper) bounds
on energy levels of the atomic two-electron system have been published [2,7,8]. Here
we extend these results towards more states and increased accuracy. Optimal numer-
ical results, however, are not the primary goal of our study, rather we strive for an
appropriate balance between sharpness and simplicity of the bounds. Our emphasis
on simplicity of the bounds is motivated by our aim to provide expressions that may
serve as input for further analytical manipulations. An example revealing how the
bounds derived in the subsequent Sect. 2 lead to rigorous qualitative properties of
excitation energies will be discussed in Sect. 3. Atomic units are used throughout
the paper.

2 Bounds from three-dimensional projections

Within standard nonrelativistic Schrödinger theory, atomic systems with two electrons
are modeled by the Hamilton operator

H(Z) = HB(Z)+ 1

r12
, HB(Z) = −

2∑

i=1

(
1

2
�i + Z

|ri |
)

(1)

acting in the antisymmetrized tensor product space H = ∧2
i=1 L2(R3,C2) ∼=(

L2(R3)⊗ C
2
) ⊗A

(
L2(R3)⊗ C

2
)
. Here r12 = |r1 − r2| and we assume Z > 0

for the nuclear charge parameter Z . The operator H as well as its “base part” HB are
self-adjoint on

∧2
i=1 W 2,2(R3,C2) with W k,p standing for the usual Sobolev spaces

[9]. Due to the commutation properties of the relevant operators, the eigenspaces of H
and of HB can be decomposed into the different symmetry sectors 2S+1Le,o labeled
by the quantum numbers for the total spin 2S + 1, the total angular momentum L , and
by the parity P behaviour (where P = (−1)L corresponds to ”even” or ”natural” and
P = (−1)L+1 to ”odd” or ”unnatural” parity).

Lower bounds on spectral points of H can be derived by the method of intermediate
operators [10], i.e., by using that

H(Z) ≥ HLB(Z) = HB(Z)+ r−1/2
12 PK r−1/2

12 (2)

for any projection operator PK in H. The particular choice [11,12]
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PK =
K∑

i, j=1

r1/2
12 |ψB

i 〉Mi j 〈ψB
j |r1/2

12 (3)

offers the advantage that the (symmetry adapted) eigenfunctions ψB
i of the base

operator HB are explicit and the matrix W = ((Wi j )) = ((〈ψB
i , r12ψ

B
j 〉))

and its inverse M = W −1 can be computed in closed form. In fact, the
ψB

i can be constructed as appropriate tensor products of hydrogenic functions
ψn�m(r) = Y m

� (ω)ψ
rad
n� (Zr) with r = (r, ω) and the radial functions ψ rad

n� (r) =
(2/n2)

√
(n − �− 1)!/(n + �)!(2r/n)�L2�+1

n−�−1(2r/n) exp(−r/n).
Obviously HLB acts nontrivially only in a K dimensional subspace. Thus, the

computation of its eigenvalues is reduced to determining the roots of a polynomial of
degree K . While for K = 1, 2 this yields straightforward results [8], for K = 3, 4
the ensuing expressions become significantly more complicated. Nonetheless, in case
of the characteristic polynomial associated with a symmetric (3,3) matrix, it is still
possible to express the eigenvalues in a relatively compact way [13]; for HLB they
are of the form

E1(Z) = T (Z)+ 2
√

P(Z) cos
1

3

(
2π + arccos

Q(Z)

(P(Z))3/2

)

E2(Z) = T (Z)− √
P(Z)

(
cos

1

3
arccos

Q(Z)

(P(Z))3/2
− sin

1

3
arccos

Q(Z)

(P(Z))3/2

)

E3(Z) = T (Z)− 2
√

P(Z) cos
1

3
arccos

Q(Z)

(P(Z))3/2
. (4)

Here, HLB
i j = 〈ψB

i , HLBψB
j 〉 denote the matrix elements, T = tr((HLB

i j ))/3, and
P, Q are polynomials in Z ,

P(Z) = 1

6

3∑

i, j=1

(
HLB

i j (Z)− T(Z)δi j

)2
, (5)

Q(Z) = 1

2
det

((
HLB

i j (Z)− T(Z)δi j

))
. (6)

Lower bounds on the eigenvalues E j (Z) of H(Z) are then provided by

ELB
j (Z) = min

{
E j(Z), EB

4 (Z)
}

≤ E j (Z), j = 1, 2, 3, (7)

where EB
k (Z) stands for the kth eigenvalue of the base operator HB(Z). For the

considered states, they are given by EB
k (Z;1S) = −(1 + k−2)Z2/2 in the 1S sec-

tor, by EB
k (Z;3S,1P,3P) = −(1 + (k + 1)−2)Z2/2 in the sectors 3S,1P,3P, and by

EB
k (Z;3 Po) = −(1/4 + (k + 1)−2)Z2/2 in the sector 3Po with unnatural parity.
Since the operator H(Z) is bounded below, upper bounds on its eigenvalues com-

plementary to the lower ones (7) can be produced from variational methods, e.g., by
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restricting H(Z) to subspaces spanned by symmetry adapted ψB
i , i = 1, . . . , K . If

K = 3, the solutions Ẽi of the corresponding eigenvalue equations again are of the
form (4) with P, Q replaced by the analogous quantities P̃, Q̃.

The base operator HB being diagonal in the subspaces span{ψB
i }1≤i≤K , the inter-

action terms 〈ψB
i , r12ψ

B
j 〉 and 〈ψB

i , r−1
12 ψ

B
j 〉 are the only nontrivial matrix elements.

These matrix elements can be calculated exactly; due to a rapid proliferation of dig-
its, however, their manual computation gets impractical already for low-lying excited
states. On the other hand, with the help of computer algebraic systems (e.g., Math-
ematica, Reduce) the calculation of such matrix elements [14] as well as of all other
quantities for the eigenvalues (4) for the lower and upper bounds no longer presents a
problem. While the resulting expressions are exact and are not affected by numerical
approximations, they may contain up to several hundred digits. Thus, to cast them into
a form that can conveniently be used within an analytical context, we estimate the
complicated expressions by simpler ones that involve not more than four or five digits.
The simplified expressions ELB

i and EUB
i are built such that they still furnish rigorous

bounds, i.e., ELB
i ≤ Ei and Ẽi ≤ EUB

i , while at the same time not too much accuracy
is lost, i.e., ELB

i ≈ Ei and EUB
i ≈ Ẽi . More precisely, we estimate the coefficients in

the polynomials T (Z), P(Z), Q(Z) such that for all Z ≥ 0

T L(Z) = Z
(

tL
0 − tL

1 Z
)

≤ T (Z) = Z(t0 − t1 Z) ≤ T U(Z) = Z
(

tU
0 − tU

1 Z
)

Z2 PL(Z) = Z2
2∑

i=0

pL
i (−Z)i ≤ P(Z) =

4∑

i=2

pi (−Z)i ≤ PU = Z2
2∑

i=0

pU
i (−Z)i

Z3 QL(Z) = Z3
3∑

i=0

qL
i (−Z)i ≤ Q(Z) =

6∑

i=3

qi (−Z)i ≤ QU = Z3
3∑

i=0

qU
i (−Z)i

(8)

and analogously for P̃(Z) and Q̃(Z). To deduce the wanted bounds on Ei and Ẽi from
these estimates, we need the following simple monotonicity properties.

Lemma 2.1 The functions x 
→ f1(x) = cos 1
3 (2π + arccos x) and x 
→ f2(x) =

cos 1
3 arccos x − √

3 sin 1
3 arccos x are monotonically increasing while x 
→ f3(x) =

cos 1
3 arccos x is monotonically decreasing for x ∈ [−1, 1].

Proof Since 1
3 arccos x ∈ [0, π/3] for −1 ≤ x ≤ 1, the nonnegativity of the deriv-

ative f ′
1 follows from sin y ≥ 0 for 2π/3 ≤ y ≤ π , and, after writing f2(x) =

f1(x) + √
3 sin 1

3 (2π + arccos x), the nonnegativity of f ′
2 results by using that also

− cos y ≥ 0 if 2π/3 ≤ y ≤ π . On the other hand, the nonpositivity of f ′
3 is a

consequence of − sin y ≤ 0 for 0 ≤ y ≤ π/3. ��
The polynomials QL,U(Z) and Q̃L,U(Z) obey QL,U(0) > 0 and Q̃L,U(0) > 0 and

enjoy only one (nonnegative) real root ZL,U
0 , Z̃L,U

0 , respectively. Hence QL,U(Z) > 0

if 0 ≤ Z < ZL,U
0 while QL,U(Z) < 0 if 0 ≤ Z > ZL,U

0 , and analogously for
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Q̃L,U. In the subsequent theorem therefore we have to distinguish between these
two Z domains.

Theorem 2.1 Let Ei (Z), i = 1, 2, 3, be the lowest energies of H(Z) within a spec-
ified symmetry sector (i.e., E1(Z) = inf{σ(H(Z))} and E j (Z) = inf{σ(H(Z)) \
E j−1(Z)}, j > 1, where σ(H) denotes the spectrum of H). Then for Z > 0

min
{

ELB
i (Z), EB

4 (Z)
}

≤ Ei (Z) ≤ min
{

EUB
i (Z), E∞(Z)

}
(9)

where

ELB
1 (Z) = T L + 2Z

√
PU(Z) cos

1

3

(
2π + arccos

QL(Z)

(P1(Z))3/2

)

ELB
2 (Z) = T L−Z

√
PL(Z)

(
cos

1

3
arccos

QU(Z)

(P2(Z))3/2
−√

3 sin
1

3
arccos

QU(Z)

(P2(Z))3/2

)

ELB
3 (Z) = T L − 2Z

√
PL(Z) cos

1

3
arccos

QL(Z)

(P3(Z))3/2

EUB
1 (Z) = T U + 2Z

√
P̃L(Z) cos

1

3

(
2π + arccos

Q̃U(Z)

(P̃1(Z))3/2

)

EUB
2 (Z) = T U−Z

√
P̃U(Z)

(
cos

1

3
arccos

Q̃L(Z)

(P̃2(Z))3/2
−√

3 sin
1

3
arccos

Q̃L(Z)

(P̃2(Z))3/2

)

EUB
3 (Z) = T U − 2Z

√
P̃U(Z) cos

1

3
arccos

Q̃U(Z)

(P̃3(Z))3/2
(10)

and

P1(Z) =
{

PU(Z), Z < ZL
0

PL(Z), Z ≥ ZL
0

P̃1(Z) =
{

P̃L(Z), Z < Z̃U
0

P̃U(Z), Z ≥ Z̃U
0

P2(Z) =
{

PL(Z), Z < ZU
0

PU(Z), Z ≥ ZU
0

P̃2(Z) =
{

P̃U(Z), Z < Z̃L
0

P̃L(Z), Z ≥ Z̃L
0

(11)

P3(Z) =
{

PU(Z), Z < ZL
0

PL(Z), Z ≥ ZL
0

P̃3(Z) =
{

P̃L(Z), Z < Z̃U
0

P̃U(Z), Z ≥ Z̃U
0

The coefficients for the T L,U, QL,U, PL,U, Q̃L,U, P̃L,U and the symmetry sectors
1S,3S,1P,3P,3Po are collected in Tables 1 and 2. Furthermore, in Table 3 we present
bounds for the roots ZL,U

0 , Z̃L,U
0 and for the crossings between ELB

i (Z) and EB
4 (Z).

The threshold E∞ of the continuous spectrum is determined by E∞(Z) = −Z2/2 for
the even partity states, and by E∞(Z) = −Z2/8 in the 3Po symmetry sector.
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Table 1 Coefficients of the lower bound polynomials T L, QL,U, and PL,U

1S 3S 1P 3P 3Po

T L T L T L T L T L

tL
0

700
963

712
2439

1783
5183

2725
8279

3989
15049

tL
1

157
72

493
288

493
288

493
288

169
288

PL PU PL PU PL PU PL PU PL PU

pL,U
0

131
8409

21
1348

32
19605

26
15929

55
19187

41
14303

3
1261

28
11769

15
15638

40
41701

pL,U
1

1118
33987

1178
35811

81
39292

23
11157

3
1096

74
27035

3
1195

77
30672

28
17529

27
16903

pL,U
2

889
46656

889
46656

5
6337

38
48161

5
6337

38
48161

5
6337

38
48161

5
6337

38
48161

QL QU QL QU QL QU QL QU QL QU

qL,U
0

333
222446

173
115565

1
22178

1
22173

3
25483

1
8494

3
35812

1
11937

1
71079

1
70578

qL,U
1

831
166126

146
29187

1
11919

1
11921

1
6214

13
80783

1
7739

4
30957

1
24653

1
24659

qL,U
2

295
49966

497
84180

1
16432

2
32863

1
11953

8
95623

1
13225

1
13222

1
22667

1
22662

qL,U
3

167
70086

133
55817

1
62094

1
62095

1
62094

1
62095

1
62094

1
62095

1
62094

1
62095

Table 2 Coefficients of the upper bound polynomials T U, Q̃L,U, and P̃L,U

1S 3S 1P 3P 3Po

T U T U T U T U T U

tU
0

8753
9098

249
739

3377
7735

15306
39277

8303
26674

tU
1

157
72

493
288

493
288

493
288

169
288

P̃L P̃U P̃L P̃U P̃L P̃U P̃L P̃U P̃L P̃U

p̃L,U
0

333
10288

1684
52027

28
11505

46
18901

59
10134

181
31089

34
9007

113
29935

33
22793

13
8979

p̃L,U
1

95
2208

1078
25055

63
28477

56
25313

9
2717

64
19321

238
85389

9
3229

25
13956

57
31820

p̃L,U
2

889
46656

889
46656

5
6337

38
48161

5
6337

38
48161

5
6337

38
48161

5
6337

38
48161

Q̃L Q̃U Q̃L Q̃U Q̃L Q̃U Q̃L Q̃U Q̃L Q̃U

q̃L,U
0

25
5308

47
9979

1
11647

11
128116

3
8104

10
27013

1
5732

7
40119

1
39011

1
38996

q̃L,U
1

113
12133

78
8375

1
9468

8
75749

24
86399

1
3600

1
5684

13
73893

1
19395

1
19396

q̃L,U
2

53
6856

67
8667

2
30477

1
15238

2
19625

1
9812

3
35497

1
11832

1
19951

1
19947

q̃L,U
3

34
14269

31
13010

1
62094

1
62095

1
62094

1
62095

1
62094

1
62095

1
62094

1
62095

Proof The bounds (10) follow in a straightforward way from the estimates (8) by tak-
ing into account the nonnegativity or nonpositivity of QL,U(Z) and Q̃L,U(Z) on the
respective Z domains and the fact that the terms cos F(Z), cos F(Z)− √

3 sin F(Z)
in (4) have a definite sign for all Z ≥ 0. ��
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Table 3 Estimates of the real roots ZL,U
0 , Z̃L,U

0 of QL,U, Q̃L,U and of the crossings Zcr
i between ELB

i
and EB

4 , i = 1, 2, 3, the fraction given first being a lower bound, the second one an upper bound

1S 3S 1P 3P 3Pun

ZL
0

4231
4067

3973
3819

1031
625

8667
5254

8287
3982

1642
789

1379
709

4526
2327

1457
1072

6021
4430

ZU
0

3173
3050

6217
5976

10702
6477

9091
5502

2927
1406

5294
2543

2154
1105

9193
4716

8753
6379

483
352

Z̃L
0

19042
12371

2569
1669

1502
685

6429
2932

13663
4302

740
233

4580
1709

10709
3996

5524
2995

1138
617

Z̃U
0

14988
9737

6485
4213

261
119

5549
2530

9641
3035

8256
2599

6232
2325

1493
557

1211
656

7290
3949

Zcr
1

2183
2319

8106
8611

4501
3196

12420
8819

3574
2181

957
584

14265
8912

3443
2151

5487
4295

290
227

Zcr
2

205
118

5502
3167

3764
1747

7291
3384

6528
2693

1229
507

7519
3198

2946
1253

2535
1219

3319
1596

Zcr
3

3540
1049

24888
7375

13165
3138

14067
3353

6143
1354

3870
853

31155
6994

31400
7049

3557
858

4183
1009

3 Applications

To illustrate the application of the bounds established in the preceding section, below
we study an example within the theory of atomic Schrödinger operators. In 1983,
Simon [15] formulated a conjecture about the monotonicity of ionization energies.
Although this conjecture appears highly plausible by heuristic arguments and is in
accordance with all experimental data, until today only very little progress has been
achieved [3] towards its general solution. If Ei (Z , N ) denotes the i th energy level of
an atomic Hamiltonian H(Z , N ) (constructed in analogy to (1) ) and E∞(Z , N ) =
inf σess(H(Z , N )) the threshold of the continuous spectrum of H(Z , N ), then the
monotonicity conjecture claims that

IP(Z , N ) ≥ IP(Z , N + 1) (12)

for all Z > 0 and N = 1, 2, . . .. Here, the ionization potential IP is given
by IP(Z , N ) = E∞(Z , N ) − E1(Z , N ), and the situation is displayed schemati-
cally in Figure 1. In the simplest case, N = 1, the relation (12) is equivalent to
Z2 + E1(Z , 2) ≥ 0. Actually, to prove the stronger inequality

Z2 + ELB
1 (Z , 2) > 0, (13)

we merely need to resort to (the parabolic version of ) lower bounds from one-dimen-
sional projections [8], viz., ELB

1 (Z , 2) = min{−(Z − ZL)
2, EB

2 (Z)} with ZL =
128(1 − √

5/8)/105 for which (13) can be verified easily.
One may extend Simon’s conjecture by regarding excitation energies �E j

(Z , N ) = E j (Z , N ) − E1(Z , N ) not only to the ioniziation threshold, but also to
less excited energy levels. The monotonicity

�E j (Z , N ) ≥ �E j (Z , N + 1) (14)

can be physically explained as a manifestation of the screening effect in atoms: N
electrons shield an additional electron more strongly against the attractive nuclear
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Fig. 1 Schematic comparison
of the spectral properties of
relevance for ionization energies
of atoms with N and N + 1
electrons

charge than N − 1 electrons do, therefore causing a reduced level spacing. For N = 1
and the two-electron states considered in Sect. 2, the relation (14) means

�E
(

Z; 21S, 23S, 21P, 23P
)

≤ − Z2

8
+ Z2

2
= 3Z2

8

�E
(
Z; 31S, 33S, 31P, 33P

)
≤ − Z2

8
+ Z2

2
= 3Z2

8
(15)

�E
(

Z; 43S, 41P, 43P
)

≤ − Z2

8
+ Z2

2
= 3Z2

8
.

In (15) we invoked the standard spectroscopic notation for the two-electron states with
�E(Z; 21S) = E(Z; 21S)− E(Z; 11S) and analogously for the other states.

While a similar analysis can also be performed for the first two inequalities in (15),
in the sequel we focus onto the last one because for this inequality the application of
bounds from three-dimensional projections becomes essential. Graphically, a verifica-
tion could proceed by plotting the elementary functions occurring in (10) as depicted
in Fig. 2. A rigorous statement reads as follows.

Theorem 3.1 For 35/158 ≤ Z ≤ 432738/113 ≈ 3829.5 the inequality holds

max
{

EUB
3 (Z;3S), EUB

3 (Z;1P), EUB
3 (Z;3P)

}
− ELB

1 (Z;1S) ≤ 15Z2

32
(16)

and implies the validity of the last estimate in (15) for 0 < Z < 432738/113.

Proof For Z below ≈ 4, the maximum in (16) is attained by the upper bound for the
1P state. Thus we set

F1(Z) = 15Z2

32
−

(
EUB

3 (Z;1P)− ELB
1 (Z;1S)

)
(17)
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0.5 1.0 5.0 10.0 50.0 100.0

0.50

0.20

0.30

0.15

0.70

Z

Fig. 2 Energy difference (EUB
3 (Z;1P)− ELB

1 (Z;1S))/Z2 (solid line), (EUB
3 (Z;3P)− ELB

1 (Z;1S))/Z2

(dashed line), (EUB
3 (Z;3S)− ELB

1 (Z;1S))/Z2 (dashed dotted line), (E∞(Z)− ELB
1 (Z;1S))/Z2 (dotted

line) and the value 15/32 indicated by a long-dashed line

where for Z ≤ Zcr we have to employ ELB
1 (Z;1S) = EB

4 (Z). Using that | cos x | ≤ 1,
we get

F1(Z) ≥ 1357Z2

864
− 3377Z

23205
− 2Z

√
38Z2

48161
− 64Z

19321
+ 181

31089
, (18)

in which the last term obeys

√
c2 Z2 + c1 Z + c0 ≤ √

c2

√
(Z + c1/(2c2))2 +

√
c0 − c2

1/(4c2) (19)

so that, after also estimating terms with proliferating digits, we arrive at

F1(Z) ≥ 1357Z2

864
− 3377Z

23205
− 2Z

⎛

⎝
√

38Z2

48161

(
233

111
− Z

)
+

√
1

426

⎞

⎠ (20)

which is a polynomial of second degree in Z with roots Z1 = 0 and Z2 < 35/158,
and which becomes positive for Z > Z2. If Zcr ≤ Z ≤ 128/105, we can use
ELB

1 (Z;1 S) = EB
2 (Z) as lower bound in (17). This only changes the first term in

(18) into 719Z2/432, and in the same way as before leads to a polynomial with roots
Z1 = 0, Z2 < 35/128 and positivity for Z > Z2. If 128/105 ≤ Z ≤ 233/111, we
take the lower bound ELB

1 (Z;1S) = −Z2 + 16Z/35) from a one-dimensional projec-
tion [8]. Then the first two terms on the right hand side of (18) become 17Z2/432 +
1033Z/3315, producing a polynomial having roots Z1 = 0 and Z2 < 126/229 and
again being positive for Z > Z2. If Z > 233/111, we still can use the same ELB

1 , but
have to revert the sign of the term 233/111 − Z . The ensuing polynomial is positive
for 0 < Z < Z2 with 737/156 < Z2 < 600/127, thus covering the remaining Z
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range where EUB
3 (Z;1P) provides the maximum in (16). For larger Z , the maxium is

attained by EUB
3 (Z;3P)} and we define

F2(Z) = 15Z2

32
−

(
EUB

3 (Z;3P)− ELB
1 (Z;1S)

)
(21)

with ELB
1 (Z;1S) from the one-dimensional projection. Then, with g(Z) = Q̃U(Z)/

(P̃(Z))3/2,

F2(Z) = 17Z2

432
+ 64266Z

196385
− 2Z

√
38Z2

48161
− 9Z

3229
+ 113

29935
cos

1

3
arccos g(Z)

≥ 17Z2

432
+ 64266Z

196385
− 2Z

⎛

⎝
√

38Z2

48161
+

√
113

29935

⎞

⎠ cos
1

3
arccos g(Z)

≥ 17Z2

432
+ 64266Z

196385
− 2Z

⎛

⎝
√

38Z2

48161
+

√
113

29935

⎞

⎠ (22)

yielding a polynomial that is positive between its roots Z1 = 0 and < Z2 ≈ 12.45.
On the other hand, for Z ≥ 12 we will show that

g0 = −5913

8174
> g(12) ≥ g(Z) ≥ −1 (23)

so that by employing cos 1
3 arccos g(Z) ≤ cos 1

3 arccos g0 < 1982/2825 in (22)
we get a positive polynomial for 0 < Z < Z2 where the second root obeys
Z2 > 432738/113. It remains to show (23). To infer g(Z) ≥ −1, since Q̃U(Z) < 0
it is sufficient to prove 0 < (P̃U(Z))3 − (Q̃U(Z))2 = ∑6

k=0 ak Zk . By analyzing
∂(

∑5
k=0 ak+1 Zk)/∂Z , the monotonic decrease of

∑5
k=0 ak+1 Zk is easily verified,

and, computing
∑5

k=0 ak+14k > 0, we get 0 < Z
∑5

k=0 ak+1 Zk <
∑6

k=0 ak Zk for
Z ≥ 4. Next, to establish g0 > g(Z), it suffices to demonstrate G(Z) = ∑6

k=0 bk Zk =
g2

0(P̃
U(Z))3 − (Q̃U(Z))2 < 0. But, employing that G(n)(12) < 0 for all derivatives

n = 0, 1, . . . , 6, and, starting with G(6)(Z) = const < 0, the monotonic decrease of
G(5) results, and, continuing iteratively until n = 0, the monotonic decrease of all G(k)

can be deduced. Finally, to infer the last inequality in (15) for the not yet considered
Z ∈ (0, 35/158], it sufficies to observe that for Z ≤ 1 the minimum in the upper
bound (10) is attained by E∞(Z) and that E∞(Z)− EB

4 (Z) = Z2/32. ��
By Theorem 3.1 all elements found in nature are settled; nonetheless, we expect

the monotonicity properties to be valid for all Z > 0. Since however for Z → ∞
the left hand sides of (15) will approach and get arbitrarily close to their respective
right hand sides, to separate them by upper and lower bounds requires bounds that
converge sufficiently rapidly to the exact energies upon Z → ∞. Unfortunately, this
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Fig. 3 Relative differences δEi between the upper and lower bounds for i = 1 (solid line), i = 2 (dashed
line), i = 3 (dashed-dotted line) and 1S states (left panel) and 3S states (right panel)

is not the case for the bounds (10); inserting their asymptotics, it turns out that (16)
will definitely be violated if Z ≥ 2 × 106.

4 Discussion and conclusions

As we pointed out in the introduction, our emphasis lies not on numerical results
but on explicit bounds amenable to analytic calculations. Thus, the bounds derived
in Sect. 2 are not supposed to compete with numerical high precision computations.
To assess the quantitative behaviour of the bounds (10), in Fig. 3 we display the
relative differences δEi = (EUB

i − ELB
i )/(|EUB

i /2| + |ELB
i |/2) between the upper

and lower bounds for the 1S and 3S states. For the ground state 11S and Z associ-
ated to neutral or positively charged systems, δE1 remains below ≈7%, but rises to
almost 10% for Z around the negatively charged ion H−. Furthermore, apparently the
energies of the neutral or positively charged excited state 21S are much better approx-
imated by the bounds than the ground state energies, so that δE2(Z) < δE1(Z)
on that Z range. As expected, due to the ever smaller relative contribution of elec-
tronic correlation to the total energy for growing Z , all curves δEi decrease for large
enough Z . Since the correlation in 3S states also is expected to be weaker than in
1S states, for neutral and positively charged systems the relative difference δEi for
the lowest two triplet states is significantly smaller than for the corresponding sin-
glet states, viz., δEi (Z) < 1%, i = 1, 2. A behaviour very similar to the S states
can be observed for the P states, hence we abstain from including analogous plots.
Instead we compare bounds from one-, two-, and three-dimensional projections in
Fig. 4.

Obviously, whereas δE1 gets distinctly reduced when using two-dimensional rather
than one-dimensional projections in (3), merely a minor reduction is achieved when
passing from two- to three-dimensional projections. Actually, in the latter case the
reduction is larger for the first excited states, though a more remarkable advantage of
the three-dimensional projections—besides providing bounds for an additional (i.e.,
the second excited) state—is the shift of the values Z cr

i of the crossings of the lower
bound curves with the base levels to smaller numbers, thus enlarging the Z regions
where nontrivial lower bounds are available.
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Fig. 4 Relative differences δE1 between the upper and lower bounds derived from one-dimensional
(dashed-dotted line), two-dimensional (dashed line), and three-dimensional (solid line) projections for
the ground state 11S

Quantitatively, (10) yields the rigorous estimates

−361

149
−

√
305

733
sin

(
π

6
+ 1

3
arccos −

√
711

800

)
< E1(2; 11S),

E1(2; 11S) < −213

94
− 1

27

√
1523172

5795
sin

(
π

6
+ 1

3
arccos −38208

775

√
1

6571

)
,

−3733

7704
− 1

108

√
109149

1346
sin

(
π

6
+ 1

3
arccos

1918

965

√
11

892

)
< E1(1; 11S),

E1(1; 11S) < −132

325
− 1

108

√
396854

1013
sin

(
π

6
+ 1

3
arccos −23641

1235

√
4

1567

)
,

(24)

i.e., −3.0637 . . . < −2.9037 . . . < −2.8387 . . . and −0.5535 . . . < −0.5277 . . .
< −0.5110 . . . for the ground state energies of the He atom and H− ion, respectively.

In Sect. 3 we employed the bounds (10) for establishing monotonicity properties
of the excitation energies with respect to the number N of electrons. Monotonicity
of excitation energies also holds with respect to Z [16] and the bounds can equally
be utilized to improve and extend the results for this monotonicity. Further specific
prospects for the application of (10) are the ionization energy conjecture mentioned
in Sect. 3 and the analysis of level ordering and stability of matter problems [17].

Note added in proof. As a further application of the bounds established in
Theorem 2.1, the stability of the atomic anion He− with Bosonic electrons is demon-
strated in [18].
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